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Abstract
The lattice dynamics and superconductivity of face-centered cubic (fcc) La
under pressure are extensively studied using the linear-response methods within
the framework of density-functional theory. A pressure-induced softening
transverse acoustic (TA) phonon mode at the L point of the Brillouin zone is
identified and the phonon softening pressure was predicted to be ∼4.92 GPa,
which coincides with the experimentally observed second-order phase transition
pressure of ∼5.3 GPa from fcc to distorted fcc. Moreover, no elastic
instability is found under compression. Analysis of the calculated results
suggests that the TA phonon instability is the driving force for this second-
order phase transition. Furthermore, the current electron–phonon coupling
(EPC) calculations suggest that the experimental observation of elevated
superconducting transition temperature Tc with pressure is from the increased
EPC strength and the softening TA phonon.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Lanthanum metal is the first member of the rare-earth series of elements. Like all the
other rare-earth elements, La experiences a series of phase transitions under pressure. At
ambient pressure, La exhibits a double-hexagonal-close-packed (dhcp) structure and the dhcp
transforms to fcc at 2.3 GPa [1]. Low-temperature resistivity measurements [2] showed that
there was a marked peak at 5.3 GPa in the residual resistance, which was attributed to the
transformation from fcc to distorted fcc phase. This transition was further confirmed by
the measured superconducting anomaly at ∼5.4 GPa [7]. However, the room-temperature
high-pressure x-ray diffraction experiment [3] suggested that this phase transition occurred
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at about 7 GPa. The temperature effects mainly contribute to the difference among the three
experimental measurements. Through x-ray diffraction experiments, Grosshans et al speculated
that a soft phonon mode at the L point of Brillouin zone (BZ) in fcc La might be responsible for
this phase transition [3]. Wang et al [4] using frozen-phonon calculations also suggested that
the transverse acoustic phonon at the L point softens with pressure, but no direct evidence was
available in the literature. The lack of full phonon dispersion curves with pressure precludes
the justification of this phonon softening at the L point.

More interestingly, different from its isoelectronic elements of Y and Sc, lanthanum is
already a superconductor at ambient pressure, with a relatively high superconducting transition
temperature (Tc) of 4.9 K [5]. Experimental measurements [2, 6, 7] demonstrated that Tc

increases dramatically with pressure from 5 K at zero pressure to 13 K at 10 GPa. Pickett
et al [8] calculated the electron–phonon coupling (EPC) constant λ with the rigid-muffin-tin
approximation; they suggested that the drastic increase in Tc under pressure can be attributed
primarily to the changes in the electronic stiffness. Wang et al [4] suggested that the softening
of the transverse L-point phonon frequency might lead to the increased Tc; however, there are no
theoretical data supporting their conclusion. In the current study, we systemically studied the
lattice dynamics and the EPC with pressure using the linear-response approach based on the
density-functional perturbation theory [9] to reveal the nature of the pressure-induced phase
transition from fcc to distorted fcc and to uncover the physical origin for the increased Tc in fcc
La with pressure.

2. Computational details

Pseudopotential plane-wave ab initio calculations were performed within the framework of
density-functional theory [9]. We employ the generalized gradient approximation (GGA) for
the exchange–correlation functional [11]. An ultrasoft Vanderbilt pseudopotential for La with
the electronic configuration 5s25p65d16s2 is used. Previous calculations of the lattice dynamics
and equilibrium properties in fcc La have found that the effects due to the almost empty 4f
bands are rather small [4]; therefore, the 4f electronic state is not included. Convergence
tests gave a kinetic energy cut-off Ecut−off of 50 Ryd and a 12 × 12 × 12 Monkhorst–Pack
(MP) grid for the electronic Brillouin zone (BZ) integration. A 4 × 4 × 4 q mesh in the first
Brillouin zone was used in the interpolation of the force constants for the phonon dispersion
curve calculations. The spin–orbit (SO) coupling was calculated to be negligible here, which
is in good agreement with a previous theoretical calculation [8]. Note also that the effect of SO
corrections is primarily to split degenerate bands along symmetry lines rather than to cause a
net shift of states to higher or lower energy. Thus, it is reasonable to ignore the SO effect in this
study.

The EPC spectral function α2 F(ω) could be expressed in terms of the phonon linewidth
γq j due to electron–phonon scattering [18, 19]

α2 F(ω) = 1

2π Nf

∑

q j

γq j

h̄ωq j
δ(ω − ωq j ) (1)

where Nf is the electronic DOS per atom and spin at the Fermi level εf. The linewidth of a
phonon mode j at wavevector q , γq j , arising from electron–phonon interaction is given by

γq j = 2πωq j

∑

knm

|g j
kn,k+qm |2δ(εkn)δ(εk+qm), (2)

where the sum is over the BZ, and εkn are the energies of bands measured with respect to the
Fermi level at point k. The g j

kn,k+qm is the electron–phonon matrix element. The EPC constant
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Table 1. Calculated equilibrium lattice parameter (a0), bulk modulus (B0), and the pressure
derivative of the bulk modulus (B ′

0). Previous theoretical calculations [12] and experimental
results [13, 23] are also shown for comparison. The units for a0 and B0 are in au and kbar,
respectively.

a0 (au) B0 (kbar) B ′
0

This work 10.0984 265.9 2.66
Reference [12] 10.0231 280 —
Exp.a 10.0344 248 ± 7 2.8 ± 0.2
Exp.b 9.9905 — —

a Reference [13].
b Reference [23].

λ can be defined as the first reciprocal moment of the spectral function α2 F(ω) [12, 13]

λ = 2
∫ ∞

0

α2 F(ω)

ω
dω. (3)

The superconducting transition temperature Tc has been calculated with the McMillan
formula [14],

Tc = ωln

1.2
exp

(
− 1.04 (1 + λ)

λ − μ∗ (1 + 0.62λ)

)
, (4)

where ωln is the logarithmic average of the phonon frequency, μ∗ is the Coulomb
pseudopotential parameter.

A denser 20 × 20 × 20 k mesh was chosen to ensure k-point sampling convergence within
Gaussians of width 0.04 Ryd in the phonon linewidth calculation, which approximates the zero-
width limit in this calculation. We generate 47 uniform q points in the BZ for the evaluation of
the EPC constant λ. The calculations of elastic constants were performed using the CASTEP
code with a 20 × 20 × 20 Monkhorst–Pack k-point mesh.

3. Results and discussion

The theoretical equilibrium lattice constant is determined by fitting the total energies as a
function of volume to the Murnaghan [10] equation of state. Table 1 shows the calculated
values for equilibrium lattice parameters and bulk modulus, along with another theoretical
calculation [12] and the experimental results [13, 23]. It is found that the current theoretical
lattice constant and bulk modulus are in good agreement with those in experiments within 3%.
The calculated equation of states (EOS) of fcc La is compared with the experimental data as
shown in figure 1. The agreement between the theoretical results and the experimental data is
also satisfactory. These coincidences strongly support the choice of pseudopotential and the
GGA approximation for the current study. It is important to note that there is no discontinuity
predicted in this EOS calculation as shown in figure 1. We also calculated the band structure
of La along the high-symmetry directions. Our theoretical results agree very well with the
previous theoretical calculation [8].

Figure 2(a) shows the comparison of our ab initio phonon dispersion curve at zero pressure
along with the experimental inelastic-neutron-scattering data at T = 295 K [14]. There exist
two sets of experimental data, measured at low and room temperatures, respectively [14]. A
dip along the [ξξξ ] direction was found in the low-temperature phonon spectra. However, we
did not reproduce this dip in the phonon calculation. Instead, our phonon dispersion curve
agrees well with the experimental data measured at T = 295 K except for the small deviations

3
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Figure 1. Comparison of the calculated equation of states (solid line) with the experimental data
(symbols) [13].
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Figure 2. (a) The calculated phonon frequencies (solid lines) and phonon DOS of fcc La at zero
pressure, together with the experimental phonon dispersion data (symbols) at T = 295 K [14].
(b) Calculated phonon frequencies and one-phonon DOS of fcc La at different volumes. (c) Main
figure: calculated TA phonon frequencies at the q (0.5 0.5 0.5) point of the BZ as a function of
volume. The solid line through the calculated data points represents the fitted curves using a B
spline. Inset: the calculated squared phonon frequency ν2 as a function of pressure p. The solid
line through the data points is a linear fit.

of the longitudinal acoustic (LA) phonon mode near the L point and the transverse acoustic
(TA) phonon branch along the [ξξ0] direction. The calculated phonon dispersion curves at
different volumes are shown in figure 2(b). One can observe that with decreasing volume
the TA phonon frequency at the zone boundary decreases, while other phonon modes shift
to higher frequencies. At a volume of 0.859V0 (V0, theoretical equilibrium volume), the TA
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Table 2. Calculated and experimental [17] elastic constants of C11, C12, Cs and C44 with unit GPa
for fcc La at ambient pressure.

C11 (GPa) C44 (GPa) C12 (GPa) Cs (GPa)

This work 42.8 17.8 22.4 10.2
Reference [17] 29.4 16.8 16.6 6.4
Exp. 34.5 18.0 20.4 7.1

phonon frequency at the L (0.5 0.5 0.5) point softens to imaginary frequencies, signaling a
structural instability in the fcc phase. Figure 2(c) shows the variation of the frequency of the
TA (L) mode with volume. The squared phonon frequencies ν2 for the TA branch at the L point
with pressure are also plotted, as shown in the inset of figure 2(c). A near perfect linear relation
between ν2 and p is obtained. Such a behavior is consistent with the Landau theory of pressure-
induced soft-mode phase transitions [15]. The estimated transition pressure is ∼4.92 GPa
(V = 0.861V0), which is in good agreement with the experimental result of ∼5.3 GPa, [2] thus
signifying the transition from fcc to distorted fcc phase.

To search for the structure of the distorted fcc phase in La based on the predicted soft mode
at the zone boundary, one has to construct properly a supercell. This supercell requires the
atomic vibrations to fit in a unit cell whose lattice vector of the reciprocal lattice is exactly the
wavevector of the soft phonon mode. In our case of TA phonon softening at the zone boundary
of the L (0.5, 0.5, 0.5) point, the doubling of the primitive cell is necessary to accommodate
properly the atomic vibrations. Then one can search for the local energy minima by displacing
the atom along the eigenvector direction of the mode with the largest negative eigenvalue. In
many cases, one can obtain an energy well to locate the energy minimum. However, in this
work, we failed to find the energy minimum because of the formation of an energy barrier
instead of an energy well with the atomic displacement. This fact precludes us from predicting
the distorted fcc structure. The failure to find the local energy minimum might be attributed to
the fact that the energy gain is determined not only by the curvature of the energy surface but
by high-order terms as well as the strength of coupling to strain.

Table 2 lists the calculated elastic constants of fcc La with the experimental data [16]
and previous theoretical results [17] at ambient pressure. It is clear that there is an
excellent agreement in C44 between the present calculated result and that of the experimental
measurement. Note also that for C12, C11 and Cs the agreement between theory and experiment
is also satisfactory. Figure 3 plots the variation of elastic constant with pressure. It is observed
that all the elastic constants increase with increase of pressure without showing any softening
behavior. Therefore, we conclude that the elastic constants are stable within the pressures where
phonon instability occurs.

The calculated EPC parameter λ and phonon frequency logarithmic average (ωln) are
listed in table 3. It is clear that the calculated λ increases with pressure and the ωln does
not show any clear dependence on pressure. Figure 4 shows the comparison of the calculated
Tc with available experimental data. The Coulomb pseudopotential parameter (μ∗) used here
is a standard choice of 0.12. It is found that the Tc experimentally observed by Smith [6]
and Balster [2] is well reproduced by the current calculation. However, our calculated Tc is
significantly below the experimental data [7]. Note that the elevated Tc with pressure is mainly
from the increase of λ as listed in table 3.

The calculated phonon density of states (DOS) and EPC spectral function α2 F(ω) under
pressure are shown in figure 5. It is found that the shape of the phonon DOS is quite similar
to that of the spectral function. This behavior suggests that nearly all the phonon frequencies
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Figure 3. Calculated elastic constants (solid squares, solid up triangles, solid down triangles and
solid circles) of C11, C12, Cs and C44 for fcc La with pressure. Solid lines are guides to the eye.

Present work

Ref. [7]

Ref. [6]

Ref. [2]

Figure 4. The superconducting transition temperature Tc as a function of pressure. Solid squares
are the present results; up triangles, solid stars and solid down triangles are the experimental
data [2, 6, 7].

Table 3. The calculated electron–phonon coupling constant (λ), phonon frequency logarithmic
average (ωln) and electronic density of states at the Fermi level N(Ef) at three pressures. The unit
for N(Ef) is states/Ryd/unit cell/spin.

Pressure (GPa) Lambda (λ) ωln (cm−1) N(Ef)

2.5 1.30 89.73 9.75
3.5 1.43 87.38 9.59
4.5 1.51 87.54 9.43

contribute to the EPC. In order to obtain more physical insights into the characteristic pressure
dependence of the EPC constant λ, the calculated phonon linewidths at 2.5 GPa along several
high-symmetry directions in the BZ are presented in figure 6. Except for the very small
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Figure 5. (a) The calculated phonon DOS at 2.5 GPa (solid line) and 4.5 GPa (dotted line),
respectively. (b) The calculated spectral function α2 F(ω) at 2.5 GPa (solid line) and 4.5 GPa
(dotted line), respectively.

Figure 6. The calculated phonon linewidths at 2.5 GPa. The solid triangles are the calculated data
for individual phonon branches. The solid lines through the data are B spline fits to the calculated
data. The total phonon linewidths at different pressures are shown as solid squares (2.5 GPa), solid
stars (3.5 GPa) and solid circles (4.5 GPa) presented along the high-symmetry directions.

and almost negligible contributions near the zone center, the phonons along other directions
contribute a lot to the phonon linewidths, in agreement with the spectral function calculation.
This observation indicates that the EPC in fcc La is isotropic, so the conventional one-
band theory (i.e. averaging of coupling strengths) is sufficient to determine the transition
temperature [22]. This fact also explains why the currently calculated Tc is in excellent
agreement with experimental observation as depicted in figure 4. To probe the origin of the
pressure-induced enhancement of λ in fcc La and to consider the difficulty in providing a simple
description for individual phonon branches, the total phonon linewidths (defined as the sum of
the linewidths at a given q point) at 2.5, 3.5 and 4.5 GPa are also compared in figure 6. It should
be noted that the total phonon linewidth has no clear physical meaning and λ is related to the
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Figure 7. Upper panel: softened low-frequency transverse acoustic phonon ωq,1 of fcc La along the
�–L–W high-symmetry line at different pressures for the TA phonon mode with lower frequency
(frequencies below the zero axis denote imaginary values). Lower panel: electron–phonon coupling
λq,1 calculated at different pressures. The solid lines through the data are B spline fits to the
calculated data.

individual phonon linewidth divided by the square of the corresponding vibration frequencies;
nevertheless, the calculated total phonon linewidths show a dramatic increase with increasing
pressure. This behavior contributes mainly to the increased Tc with pressure.

The increased λ could be understood as follows. The EPC constant λ can be approximated
by λ = N(EF)〈I 2〉/(M〈ω2〉) [20, 21], where 〈I 2〉 is the average square of the electron–phonon
matrix element, which is related to the phonon linewidth, M is the ionic mass and 〈ω2〉 is
the mean square of phonon frequency over the phonon spectrum. The electronic DOS at the
Fermi level N(EF) under pressure is shown in table 3. Since the dominant effect of pressure
on the band structure is the broadening of the bands due to the shortened atomic distance, it is
reasonable to understand that N(EF) decreases with increasing pressure as listed in table 3. As
shown above, the phonon linewidth increases with pressure, characterizing the increasing trend
of the EPC matrix element 〈I 2〉. We argue that the softening of the low-frequency transverse
acoustic phonon under pressure also contributes greatly to the increased λ. Figure 7 shows the
softening low-frequency transverse acoustic phonon ωq,1 along the �–L–W direction and the
corresponding q-dependence EPC λq,1 under pressure. It is obvious that the EPC λq,1 for the
softened L point increases dramatically with pressure, signifying that the softening at the L
point chiefly leads to the increase in EPC λ. Thus, the elevated EPC matrix element 〈I 2〉 and
the softened low-frequency transverse acoustic phonon are responsible for the increased λ, in
spite of the decreased N(EF).

4. Conclusion

In conclusion, the lattice dynamics and EPC of fcc La have been studied as a function of
pressure by means of ab initio calculations. A soft TA phonon at the L point is verified and
suggested to be the origin of the transition from fcc to distorted fcc phase. The calculated Tc is
in excellent agreement with the experimental observation [2, 6]. The elevated Tc values with
pressure are mainly attributable to the increased EPC matrix element 〈I 2〉 and the softening
transverse acoustic phonon, in spite of an decreased electronic DOS at the Fermi level N(EF).
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